#### PATRIC update

BRC3 February 2006





#### PATRIC's Pathogens

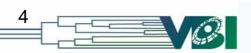
- Bacteria:
  - Brucella
  - Rickettsia
  - Coxiella burnetii
- Viruses:
  - Coronaviruses (SARS)
  - Caliciviruses
  - Hepatitis A viruses
  - Hepatitis E viruses
  - Rabies viruses ⇒ Lyssaviruses (expanded scope)





#### **Curation Concepts**

- Nucleotide-level Curation
  - CDSs and RNA gene calls
  - Ribosome binding sites and start site correction
  - Pseudogenes and other physical features
- Protein-level Curation
  - Functional assignment, classification
  - Structural properties and features
- Automated and Manual Curation
- Reference and Associated Genomes

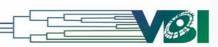




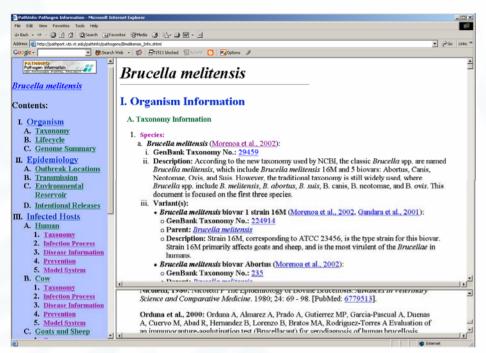

#### **Curation Progress**

- All bacterial and viral reference genomes have received nucleotidelevel manual curation
  - latest release: Dec 22, 2005
- Protein-level automated curation has been done on all bacterial reference genomes (not public yet)






### Summary of Nucleotide-level Curation for Reference Genomes


| Pathosystem | #genes GenBank entry | Start-site changes | Frameshifts | Premature stops | Genes deleted | Genes added |
|-------------|----------------------|--------------------|-------------|-----------------|---------------|-------------|
| Brucella    | 3198                 | 961                | 100         | 50              | 6             | 350         |
| Coxiella    | 2052                 | 74                 | 1           | 0               | 0             | 124         |
| Rickettsia  | 835                  | 32                 | 22          | 1               | 0             | 74          |

|             | No. of RGs | Total genes/genome | 1st pass check | New annotations |
|-------------|------------|--------------------|----------------|-----------------|
| Calicivirus | 13         | 2,3                | Υ              |                 |
| Coronavirus | 16         | 14                 | Υ              | SARS (SZ-3)     |
| Hepatitis A | 1          | 2                  | Υ              |                 |
| Hepatitis E | 5          | 3,4                | Υ              |                 |
| Lyssavirus  | 1          | 5                  | Υ              |                 |



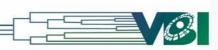


#### Literature Curation: PathInfo



#### **Curated Information**

- Organism background
- Epidemiology
- Pathogenesis
- Experiments


| Pathosystem |                         |
|-------------|-------------------------|
| Bacteria    | Status                  |
| Brucella    | Available               |
| Coxiella    | Available               |
| Rickettsia  | Available               |
|             |                         |
| Viruses     |                         |
| Calicivirus | Ready, awaiting release |
| Coronavirus | in queue                |
| Hepatitis A | in queue                |
| Hepatitis E | Ready, awaiting release |
| Lyssavirus  | In progress             |



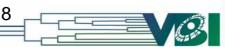
#### PathInfo Status for the Pathogens of Other BRCs

| <b>Eukaryotic pathogens</b> |          |                 |
|-----------------------------|----------|-----------------|
| BRC                         | complete | to be completed |
| Apicomplexan                | 2        | 1 /////         |
| BioHealthBase               | 0        | 1               |
| Pathema                     | 0        | 1               |
| Viruses                     |          |                 |
|                             | complete | to be completed |
| VBRC                        | 16       | 4               |
| BioHealthBase               | 0        | 1               |
| Bacteria                    |          |                 |
|                             | complete | to be completed |
| Pathema                     | 3        | 2               |
| NMPDR                       | 0        | 4               |
| ERIC                        | 4        | 1               |
| BioHealthBase               | 1        | 0               |
|                             |          |                 |

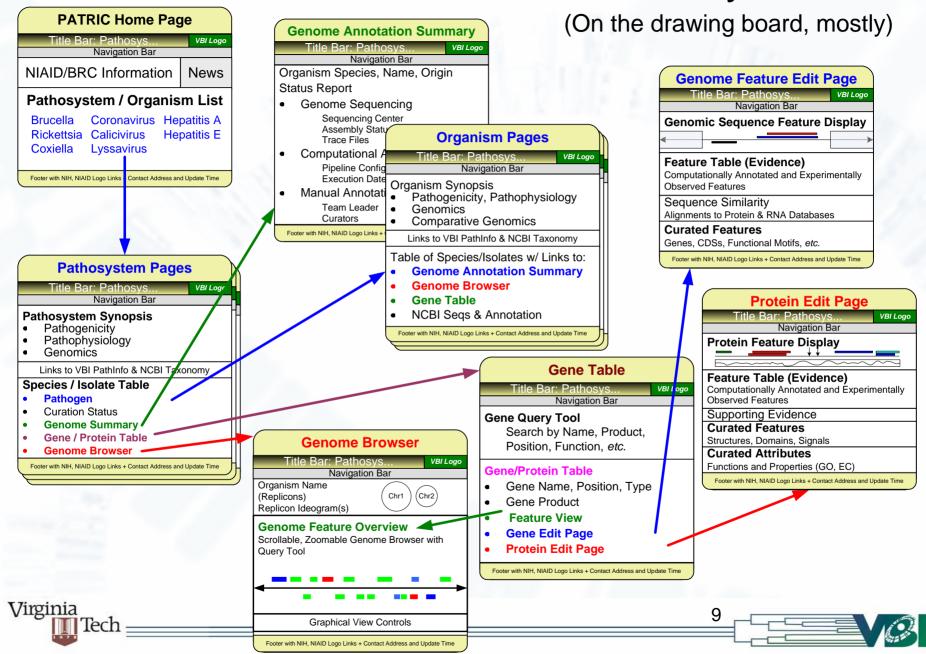




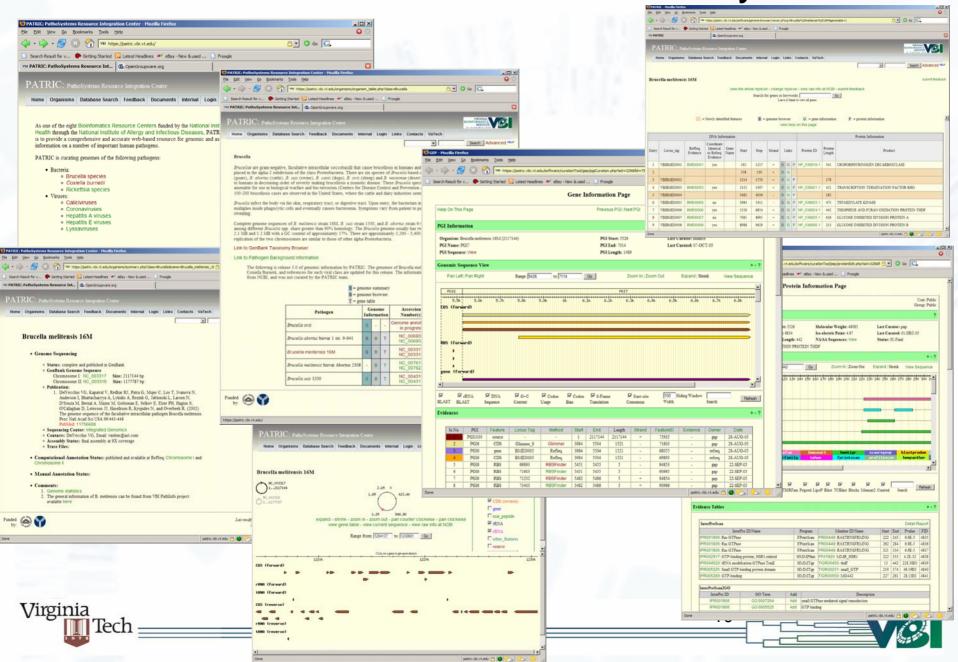
#### Progress: Software Development

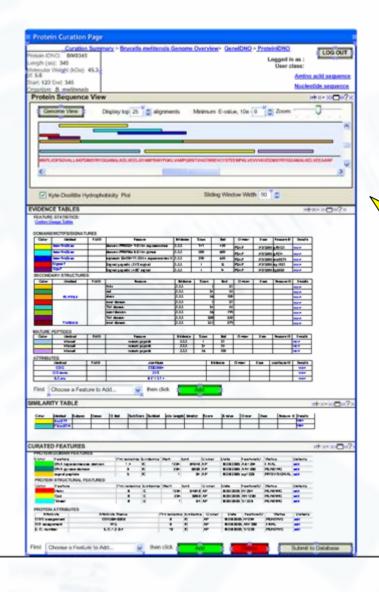

#### Curation Infrastructure

- Nucleotide-level curation: pipeline + edit page
- Protein-level curation: pipeline + edit page

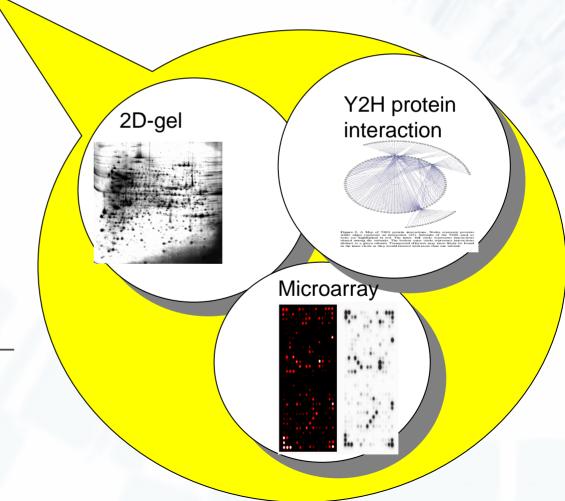

#### Improvements to External Website

- User-friendly database query interface
- Enhanced gene/protein table display highlighting corrections to published annotations



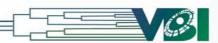

#### Curation Infrastructure: February '05




#### Curation Infrastructure: February '06






In the works: links from protein edit page to proteomics data



#### Progress: Databases

- Updated PATRIC database schema to GUS 3.5 for all database instances
- Various improvements and additions to database infrastructure





#### Curation: Two Parallel Approaches

Bottom-Up Approach:

- High-Throughput Curation
- Systematic Analysis
- Standardized Pipeline

50%

Top-Down Approach:

- Targeted Analysis
- Specialized Curation
- Specialized Methods

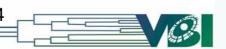
50%

Diagnostics, Therapeutics & Vaccines

**Target Discovery** 

**Analysis** 

**Curation** 






## Top-Down Approach: Targeted Discovery of Countermeasure Candidates

- Community involvement
  - Goals defined by end users (organism experts and community they represent)
  - Experts' involvement at all stages
  - Commitment from end users for validations/followup
- Problem-driven curation and analysis





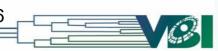
## Top down approach implementation: "Special Projects"

- Brucella
- Rickettsia
- Lyssavirus





#### Brucella Special Project


#### Project Goals

- Identify virulence factors by comparative genomics
- Identify functional polymorphisms
- Obtain diagnostic markers
- Incorporate methodology into genome annotation pipeline

#### Collaborators

- Stephen Boyle (PATRIC Organism Expert, VirginiaTech)
- Yongqun "Oliver" He (University of Michigan)

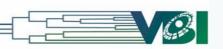




#### some preliminary results



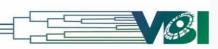



## Newly-Identified Genes in published *Brucella* genomes

#### "Newly-identified genes":

- Genomic regions not previously associated with coding sequences
- ...which have full-length alignments with known or predicted proteins in closely related genomes

|                 | Newly-identified<br>Genes | With assigned function |
|-----------------|---------------------------|------------------------|
| B. suis 1330    | 50                        | 14                     |
| B. abortus 2308 | 129                       | 14                     |



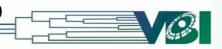



## Virulent vs. Attenuated Strain Comparison

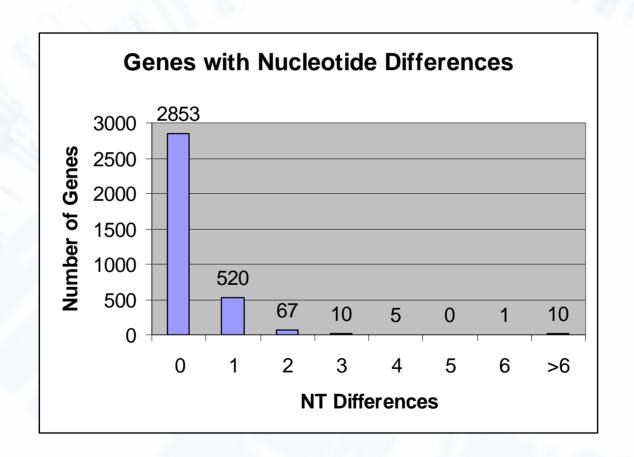
- VBI has access to two unpublished Brucella abortus strains: 9-941 and \$19
  - 9-941: parent strain
  - S19: attenuated mutant of 9-941 that developed spontaneously and is used as vaccine strain






#### Frameshifts and Premature Stops in Brucella abortus S19 ORFs

| S19<br>Analysis Size |         | Premature<br>Stop | Frameshift | Both |
|----------------------|---------|-------------------|------------|------|
| Chr I                | 2.12 Mb | 34                | 477        | 10   |
| Chr II               | 1.16 Mb | 31                | 320        | 7    |


In progress: filter to distinguish

- 1) sequencing errors
- 2) mutations shared with 9-941
- 3) mutations specific to S19



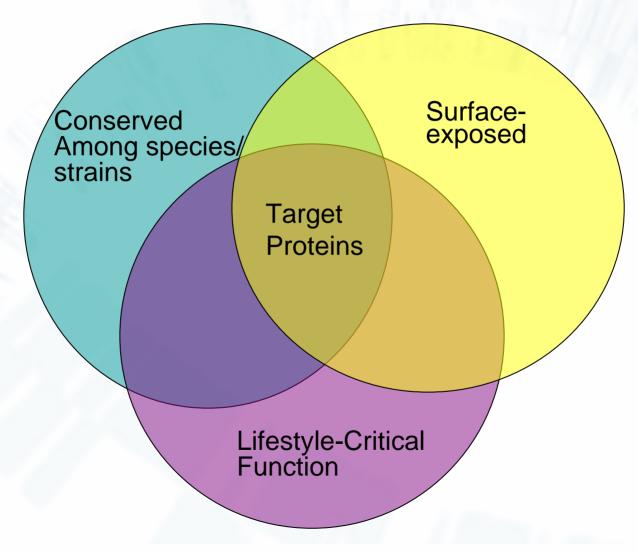


## Polymorphisms (Substitutions and Indels) between Orthologs in S19 and 9-941



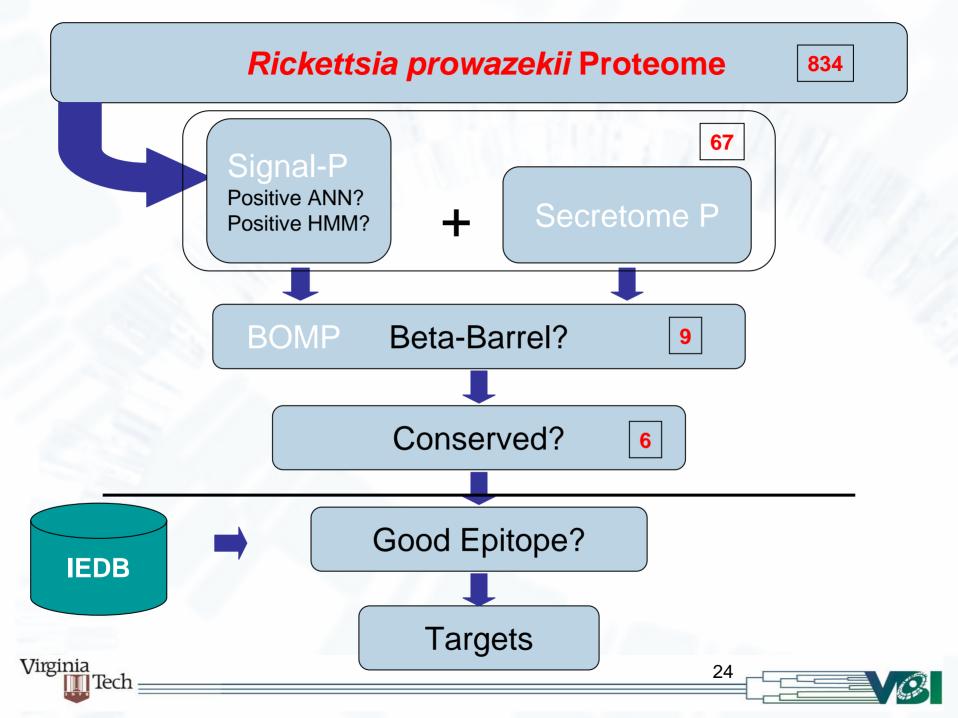





#### Rickettsia Special Project

 Collaborator: Abdu Azad (PATRIC Org. Expert, U. of Maryland)

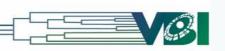





#### Finding Good Vaccine Targets



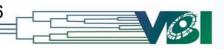







#### Vaccine Target Candidate Proteins

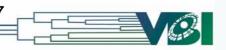
- The six genes are annotated as hypothetical proteins
- Highly conserved among 7 annotated Rickettsial genomes
- Further analysis: the coded proteins seem to share common features/ motifs characteristic of autotransporters, competence factors and secretion apparatus proteins

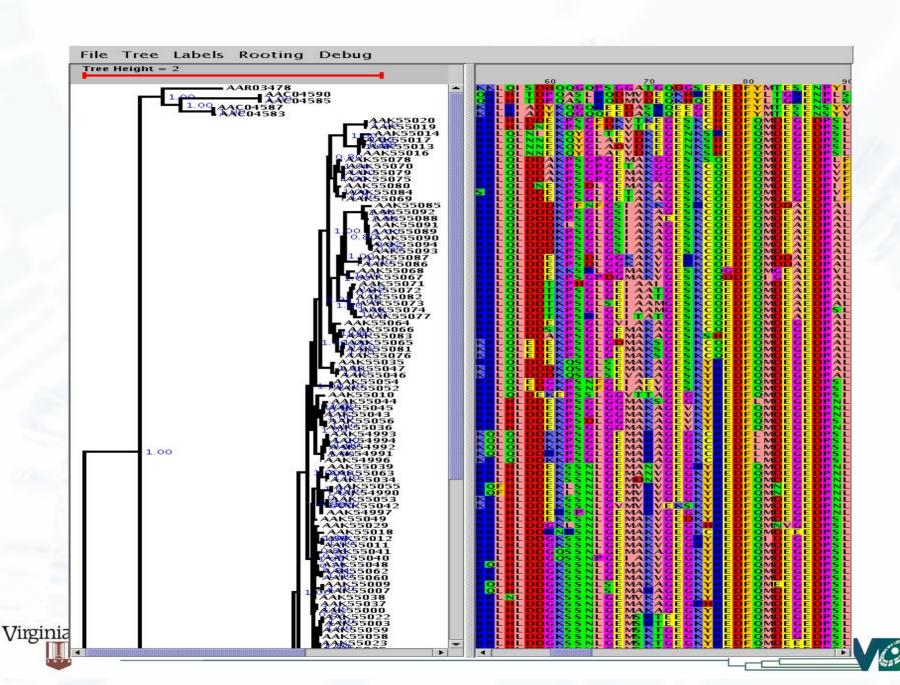





#### Lyssavirus Special Project

- Goal: develop an automated phylogenetic classification system (phylotyping) for Lyssaviruses
- Collaborators
  - Charles Rupprecht (PATRIC OE, CDC)
  - Alan Dickerman (VBI)

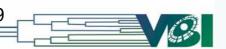



#### Phylotyping

- Tool that will allow submission of sequences for multiple sequence alignment and generation of phylogenetic tree (web-based)
- Methods: MUSCLE + Mr.Bayes + VBI programs
- Tree Viewer juxtaposes tree view with MSA

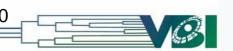







#### General plans for near future

- Steady state curation
  - Next release in June 2006
- Various improvements to infrastructure (including "automated curation")
- LANL sequence annotation
- Special projects






## Organization of Relevant Meetings by VBI

- International Symposium on the Comparative Biology of Alpha-Proteobacteria
  - April 26-29, Blacksburg
  - (Brucella and Rickettsia are alphas)
- Computational Genomics '06
  - October 28-31 (tentative), Baltimore
  - 3 main themes
    - Infectious diseases, automated annotation, and biological networks





#### **PATRIC**

#### PIs

B. Sobral

J. Setubal

#### **Executive Committee**

O. Crasta

M. Czar (project management)
R. Kenyon (project management)

A. Purkayastha (curation)

E. Snyder (bioinformatics)

R. Will (software)

#### **Curators**

C. Dharmanolla (literature)
V. Dongre (Hep E)

M. Hance (Rickettsia and Lyssavirus)

D. Jukneliene (Coronavirus)
L. Mackasmiel (Calicivirus)

J. Shallom (Coxiella and Hep A)

G. Yu (Brucella)

#### **Software Developers**

N. Kampanya (web design and visualizations)

J. Lu (database architect and administrator)

M. Shukla (genome curation interfaces)

J. Soneja (annotation pipelines)

F. Zhang (lit. curation, web navigation and queries)

#### **Organism Experts**

A. Azad (U. Maryland, Coxiella and Rickettsia)

S. Baker (Loyola U., Coronavirus)

S. Boyle (VT, Brucella)

Y. He (U. Michigan, Brucella)

Y. Khudyakov (CDC, Hep A) XJ Meng (VT, Hep E)

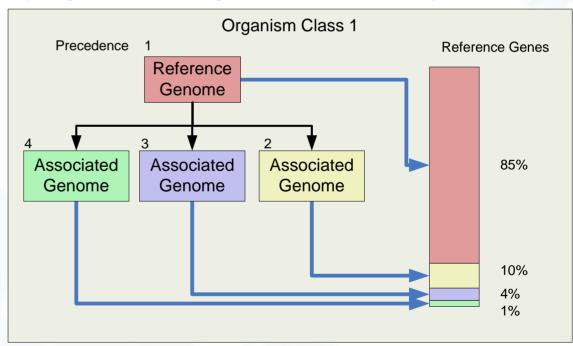
C. Rupprecht (CDC, Lyssavirus)
J. Vinje (CDC, Calicivirus)

#### **Collaborators**

J. Gabbard and D. Hix (VT, usability engineering)

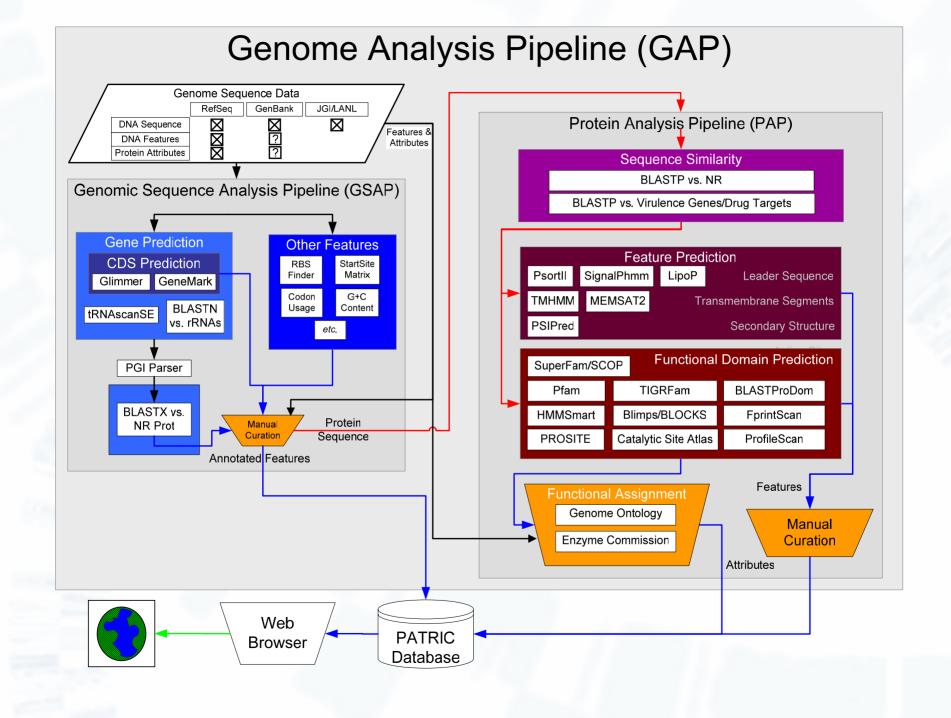
N. Ramakrishnan (VT, data mining)






# Thank You Virginia

#### What is a Reference Genome?


- -Genome sequence of the type species of a genus.
- -A lab strain that has been extensively characterized.
- -A representative of a phylogenetic subgroup (community choice)

The Reference
Genome annotation
is the starting point
to create a
Reference Gene Set
for that
Pathosystem.



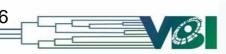






## Reference Genomes Curated for the Dec. 22, 2005 Release.

| Pathosystem | Complete<br>Genomes | Genome<br>Size | Reference<br>Genomes | DNA curation | Protein Curation |
|-------------|---------------------|----------------|----------------------|--------------|------------------|
| Bacteria    |                     |                |                      |              |                  |
| Brucella    | 4                   | 3.2 Mb         | 1                    | Υ            | auto             |
| Coxiella    | 1                   | 1.9 Mb         | 1                    | Υ            | auto             |
| Rickettsia  | 7                   | 1.2 Mb         | 1                    | Υ            | auto             |
| Viruses     |                     |                |                      |              |                  |
| Calicivirus | 64                  | 7.5 kb         | 13                   | Υ            | N                |
| Coronavirus | 163                 | 31 kb          | 16                   | Υ            | N                |
| Hepatitis A | 16                  | 7.4 kb         | 1                    | Υ            | N                |
| Hepatitis E | 48                  | 7.2 kb         | 5                    | Υ            | N                |
| Lyssavirus  | 12                  | 11.9 kb        | 1                    | Υ            | N                |

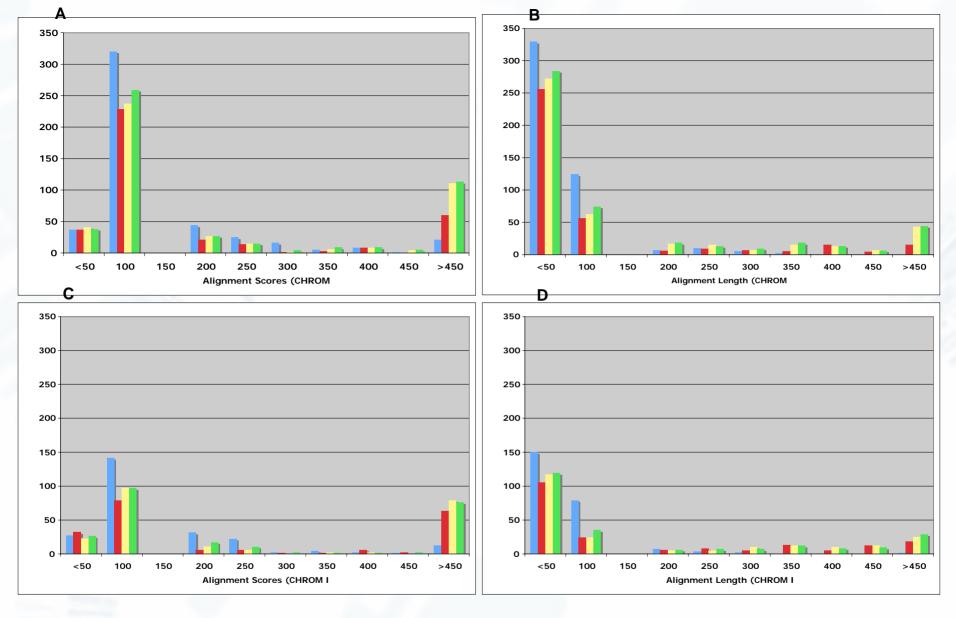




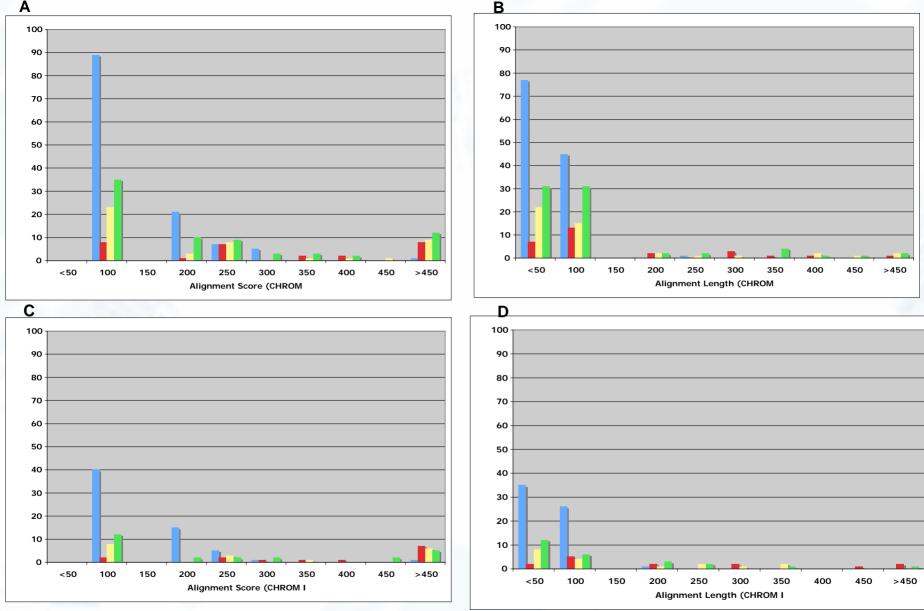

#### Pathway Analysis: plan

- Metabolic pathway prediction/visualization hyperlinked to protein annotation pages (Pathway Tools, P. Karp)
- Signaling pathways, protein complexes, gene regulation pathways also to be incorporated
- Host/Pathogen interaction visualizations in development
- All pathway proteins hyperlinked to proteomic experimental data



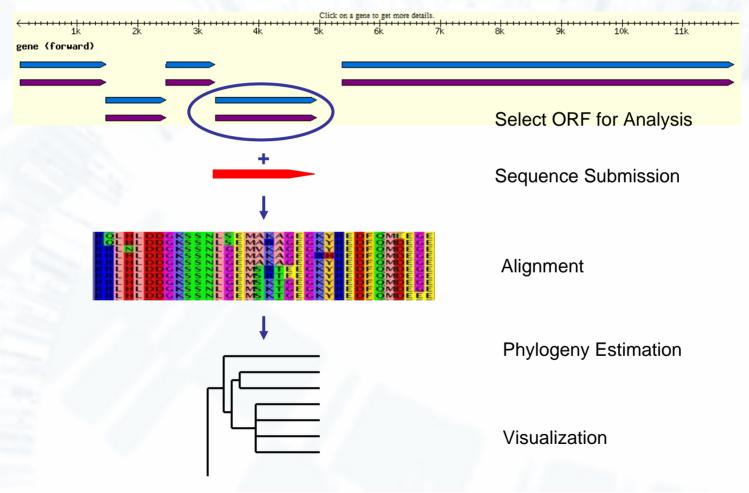

#### A Multi-Task Procedure for Critical Analysis of Sequence Variants and Comparative Genome Analysis


- 1. To identify missed genes, genes that are involved in frameshifts, in-frame stop codons, insertions, and deletions
- 2. To comparatively analyze these gene variants among closelyrelated genomes to identify genome-specific genetic factors
- 3. Build as a part of our automatic genome annotation pipeline and offer as open source software for research community.








Distribution of homologs revealed in the inter-genic regions of four Brucella genomes: *Brucella melitensis* 16M (Blue), *Brucella suis* 1330 (red), *Brucella abortus* str. 9-941 (yellow) and *Brucella abortus* str. 2308

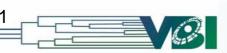


Distribution of missed genes revealed in the inter-genic regions of four Brucella genomes:

VEgucella melitensis 16M (Blue), Brucella suis 1330 (red), Brucella abortus str. 9-941 (yellow) and Brucella abortus str. 2308

#### Phylotyping Application Workflow

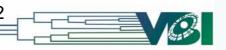







#### General plans for near future

- Steady state curation
  - Next release in June 2006
    - Nucleotide-level automated curation for all genomes
    - Automated protein-level for all reference genomes
    - Manual protein-level curation of one bacterial genome
- Various improvements to infrastructure
- LANL sequence annotation
- Special projects






## PATRIC Representation in Community Meetings

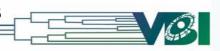
| Meeting                                  | Month         | Location   |
|------------------------------------------|---------------|------------|
| Rickettsia                               | June 2005     | Spain      |
| Nidovirus (incl. Coronaviruses)          | June 2005     | Colorado   |
| Int'l Union of Microbiological Societies | July 2005     | California |
| Int'l Virus Database Meeting             | June 2005     | Missouri   |
| Brucellosis                              | October 2005  | Mexico     |
| Rabies                                   | October 2005  | Canada     |
| Genome Informatics                       | October 2005  | CSHL, NY   |
| Biocurator                               | December 2005 | California |





#### Meeting Activities

- Abstracts
  - 4 Posters
  - 4 Presentations
- Sponsored Booth at IUMS
  - Cosponsored with VBRC
- Web-based questionnaires for four meetings
  - To gauge the bioinformatic needs of community


Nidovirus: 18 responses

– IUMS: 9 responses

Rabies: 3 responses

Brucellosis: 0 responses

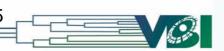




#### Survey Responses

| Resource                                    | IUMS<br>Response No. | IUMS<br>Mean Score | Nidovirus<br>Response No. | Nidovirus<br>Mean Score |
|---------------------------------------------|----------------------|--------------------|---------------------------|-------------------------|
| Universal Primers                           | 7                    | 2.7                | 13                        | 1.8                     |
| Epitope Database                            | 7                    | 2.7                | 14                        | 2.4                     |
| Viral gene expression and assembly pathways | 8                    | 2.8                | 14                        | 2.4                     |
| Phylogenetic trees                          | 7                    | 3.0                | 13                        | 2.0                     |
| Comparative Genomics                        | 7                    | 3.0                | 12                        | 2.3                     |
| Affect of viral proteins on host pathways   | 8                    | 3.1                | 14                        | 1.6                     |
| Modelling of active sites of enzymes        | 7                    | 3.3                | 12                        | 2.4                     |
| High-throughput data                        | 7                    | 3.3                | 12                        | 2.5                     |
| Epidemiological data                        | 7                    | 3.3                | 13                        | 2.5                     |
| Literature collection                       | 7                    | 3.3                | 14                        | 1.6                     |
| 3D structural data                          | 8                    | 3.5                | 14                        | 1.9                     |

1=Highest Priority


5=Lowest Priority



#### Follow Up to Survey

- Difficult to gauge needs
  - Low response to questionnaires
- Different needs of different communities
- Gap between bioinformatics resources and workflow of countermeasures development
- Approach:
  - Expedite response to one community through Special Projects; results directly applicable to one community
  - Resultant Use-Case should help build broadly applicable analysis resources





#### SWG meetings

- Face-to-face June 2005
- Conference call January 2006
- Next one: face-to-face June 2006



